Monday, October 31, 2011

15) Dark Matter: Spacetime Cavitation

This is a continuing discussion on the topic of Dark Matter. To view the previous post, click here. To go to the beginning of the series, click here.



All prior posts in this Dark Matter series are summarized as follows:

Spacetime Cavitation Summary
  1. Galaxies begin as regions of Spacetime Cavitation resulting from Universal Expansion, often taking on whirlpool-like shapes, which reflect the underlying curvature and motions of Spacetime itself, upon and within which they are formed (see image below).
  2. Matter has a counterpart within the realm of non-material Spacetime. When subjected to extreme cavitation, an applicable unit of Spacetime is converted into its material counterpart (mass and/or energy). Said another way: Matter is a byproduct of Spacetime Cavitation. This counterpart is almost always hydrogen and/or radiation.
  3. With respect to galaxy formation, hydrogen produced as a byproduct of Spacetime Cavitation, which generally lacks sufficient mass to coalesce into stars by reason of its own gravitation when sparsely distributed, instead reacts to the Gravity Well within which it was produced, spiraling and coalescing to produce stars and the other visible objects within galaxies.
  4. Since newly formed galaxies are a result of cavitation, their structures are maintained via the combination of Spacetime Cavitation Gravitation and Mass Gravitation, where, on smaller scales such as solar systems, gravitation is based on mass (spacetime curvature resulting from the presence of mass), but on the larger scales of galaxies, structure is maintained within the underlying, curved Spacetime fabric (spacetime curvature caused by cavitation). In other words, visible matter rests upon the non-flat, preexisting Spacetime structures resulting from cavitation, like bits of Styrofoam floating upon a whirlpool of water draining from a kitchen sink (see this earlier post). This removes the apparent discrepancy between galaxy structure and the seemingly insufficient mass to account for it; and further removes the need for Dark Matter (unless we redefine Dark Matter itself as merely a vacuum of Spacetime, which may be useful. In this, it could be a second classification of gravity, but more on this later).
  5. There was no Big Bang as currently theorized. Matter is continuously produced at points of extreme cavitation as a result of the Universe's relentless expansion, analogous (in some respects) to the roiling bubbles produced when gases emerge from solution during extreme depressurization of water.
  6. Background microwave radiation thought to be remnants of the Big Bang is likely the result of galactic cavitation.


Definition of a Galaxy
A galaxy is a large region of curved spacetime, which typically takes the shape of a spiral, and often contains matter such as stars, stellar remnants, and an interstellar medium of gas and dust.



The next few posts in this Dark Matter series will address the points on this page in more detail. Along the way, we will also look at mainstream observations that seem to support these assertions, which will touch upon the origins of matter, galaxy formation, Cosmic Microwave Background Radiation (CMB), the CMB Dipole Anisotropy, the blackbody Spectral Energy Distribution (SED), and more.

To be continued.

Sunday, October 30, 2011

14) Dark Matter: Galaxy Formation and the Origin of Matter

This is a continuing discussion on the topic of Dark Matter. To view the previous post, click here. To go to the beginning of the series, click here.



Now for the next big question, which has to do with the origin of matter. All along, the assumption has been that all matter present within the Universe originated from the Singularity that preceded the Big Bang. As I have pointed out, I believe this theory is wrong (Big Bang theory, that is) for many reasons. I will touch upon a couple of them now, and a few more in a following post.

If all the matter within the Universe is nothing more than the debris field of the Big Bang, then what caused the galaxies to form in the first place? I discussed what I believe to be part of the answer to this question in the previous post, finally concluding that Galaxies form at points where Universal Expansion causes spacetime to break down, cavitating into regions of non-flat spacetime. I call this process, Spacetime Cavitation.

I submit that most galaxies form as regions of Spacetime Cavitation like this, and quite possibly, all of them. To fully grasp this concept requires that we no longer think of galaxies as collections of matter, but as regions of curved spacetime that happen to contain matter. Galaxies do not begin as regions of coalescing matter, but as regions of Spacetime Cavitation, which are otherwise largely empty when cavitation begins. In fact, this cavitation probably occurs most commonly in regions that are pristinely empty of matter, but I will touch more upon this in the future.

As a level-set, the following assertions spell this concept out more succinctly:
  1. Galaxies are large regions of curved spacetime.
  2. Galaxies usually begin at points where Spacetime Cavitation occurs, which is generally caused by the stresses of Universal Expansion.
Origins of Matter
If the matter within galaxies did not originate from the Big Bang, then where did it come from? This leads to the next important part of my hypotheses: I submit that matter forms as a byproduct of Spacetime Cavitation.

We are used to thinking of E = mc2 in terms of mass/energy equivalence. The concept of conservation of mass/energy also comes into play here, which tells us that within a closed system, mass is neither created nor destroyed, but only changes state between matter and energy. I believe that this assertion is only partially correct.

I submit that matter, whether in the state of mass or energy, has a counterpart within the realms of non-physical Spacetime, which surfaces during Spacetime Cavitation. When subjected to extreme cavitation, an applicable unit of Spacetime is converted into its physical counterpart (mass and/or energy). Said another way: Matter is a byproduct of Spacetime Cavitation. And, the physical product of this event is almost always hydrogen and/or radiation.

This assertion meshes very well with the BBC News article about the Star-less Galaxy mentioned in the previous post (and I am compelled to mention again, that this expectation predated my discovery of the article). This star-less galaxy has form and structure - and even rotation - but contains no stars. It contains virtually nothing but hydrogen, the lightest element.

If this hydrogen were floating in a region of typically flat, intergalactic space, it would almost certainly continue to do so forever, or until it came into contact with some other influencing factor such as another galaxy (highly unlikely), or simply dissipate. But, at some point in the incomprehensible future, this galaxy will begin to fill with stars, and those stars will pass through their life cycles to produce heavier elements, and within a billion years or so, it will have the appearance of a typical, visible young galaxy, full of incubating stars. These stars would have no chance of forming were it not that this body of hydrogen - by no coincidence - is located within a pre-existing galactic structure.

To summarize; with respect to galaxy formation, hydrogen produced as a byproduct of Spacetime Cavitation, which lacks sufficient mass to coalesce into stars by reason of its own gravity when sparsely distributed, reacts to the Gravity Well within which it was produced, spiraling and coalescing to produce stars and other visible objects within galaxies - again, like bits of Styrofoam floating upon a whirlpool of water draining from a kitchen sink.


Rather than thinking of the entire Universe as having a fixed amount of mass and energy, it is likely more accurate to think at galactic scales. Once a galaxy forms and matures to the point where Spacetime Cavitation abates, the galaxy will receive no more hydrogen to fuel its physical processes.

This means that our current understanding of what galaxies are, should change slightly. Wikipedia defines a galaxy like this:
A galaxy is a massive, gravitationally bound system that consists of stars and stellar remnants, an interstellar medium of gas and dust, and an important but poorly understood component tentatively dubbed dark matter.
This definition is good, of course, but not entirely accurate. I submit the following definition:
A galaxy is a large region of curved spacetime, which typically takes the shape of a spiral, and often contains matter such as stars, stellar remnants, and an interstellar medium of gas and dust.
The typical lifecycle of a galaxy is as follows (actually, how galaxies may end their lives is not included here):
  1. Galaxies first appear at points where Universal Expansion stresses the spacetime fabric to the point of cavitation; Spacetime Cavitation.
  2. The region of spacetime where cavitation occurs generally, but not necessarily, responds by taking the shape of a rotating spiral. The non-flat shape of these spirals manifest as gravitation in much the same way that spacetime curvature resulting from the presence of mass also produces gravity.
  3. Matter (usually hydrogen) produced as a byproduct of cavitation, responds to the gravitational influences of locally curved spacetime, naturally collecting within the trenches of the underlying spirals (the spiral arms), where it begins to coalesce into stars. As the stars continue to grow, they produce areas of increased spacetime curvature - localized Gravity Wells - that continue to accelerate their own formation and the birth of Solar Systems.
  4. The birth of new galaxies, encompassing the initial Spacetime Cavitation event, production of matter, and continuing to the point where stars begin to form in earnest, typically spans a period of 200 million years.
  5. Matter continues to follow the gravitational trail from the outer regions of galaxies to eventually form one or more black holes at their centers.
To view the next post in this Dark Matter series, click here.

Saturday, October 29, 2011

13) Dark Matter: Sources of Natural Gravitation

This is a continuing discussion on the topic of Dark Matter. To view the previous post, click here. To go to the beginning of the series, click here.



There are two gravitational conditions. First is the common notion of Relativistic gravitation, which tells us that gravity is a result of the curvature of spacetime caused by the presence of mass. This form of gravity is most familiar to us. When we look up at the night sky, we are peering at the stars from deep within the earth’s Gravity Well, which also happens to be fairly deep within the Sun’s Gravity Well.

Kepler’s Laws of planetary motion, Einstein’s General Relativity, and even Newtonian Gravitation all provide good frameworks for understanding what we see in the skies, especially when it comes to the behavior of nearby celestial objects like the planets in our Solar System.

However, applying what we have learned about gravitation to our observations of other galaxies, especially spiral galaxies, we find that they do not seem to behave as we expect. As we have discussed at length, there simply isn’t enough visible matter within them to account for their ability to hold their shapes as they rotate. We can also reasonably conclude that since this phenomena is at work in virtually every other galaxy we observe, the same conditions almost certainly apply to our own Milky Way Galaxy as well.

If we back up for a moment and recall our earlier discussions about Dark Energy and Universal Expansion, we know that the Universe is expanding at an ever-increasing rate; yet our galaxy, which is usually estimated to be around 13 billion years old, isn’t stretching. It appears to rotating happily along, just like the other spiral galaxies we see in the skies.

This means that the galaxies seem to be, somehow, exempt from Universal Expansion, except for the fact that they are drifting away from one another. Internally, they hold together quite well. How could that be? Does the presence of matter somehow cancel the effects of Dark Energy? My guess is that it does not. The presence of matter is certainly related, but as a symptom more than a cause. Here’s how.

In my post on Galaxy Formation and Spacetime Stress, I briefly discussed the question of how substances and objects respond to stress. One of my analogies used water cavitation as an example of how something that is stable under one set of conditions, can break down when pressed beyond certain boundaries or tolerances. I concluded that post with a question: Is it possible that spacetime itself could be susceptible to the stresses of Universal Expansion?

I believe that it must be. Indeed, the enormous stresses of Universal Expansion likely manifests in at least two important ways. One relates to gravitation, and the other relates to the origins of matter.

First, I submit that under the tremendous stress of Universal Expansion, spacetime itself reacts. There may not be a good word with which to label this event. Perhaps we could say that spacetime tears, or collapses, or cavitates. I think that the closest match is cavitation - that spacetime itself distorts and curves into non-flat regions. As we already know, Gravity Wells are said to be regions of curved spacetime. Under Universal Expansion, this curvature exhibits the effects of gravitation (it is non-flat), but without any mass to account for it. Sound familiar?

To briefly summarize this part of the equation, let us say that there are two fundamental sources of natural gravitation, as follows:
  1. Gravitation that results from the curvature of spacetime caused by the presence of mass (this generally occurs on smaller scales).
  2. Gravitation caused by the deformation of spacetime resulting from Universal Expansion (this generally occurs on larger scales).
This understanding of gravitation constitutes half of what I believe to be a high-level, but complete explanation for Dark Matter. Essentially, galaxies begin as regions of Spacetime Cavitation resulting from Universal Expansion, which often take on whirlpool-like shapes.

Since newly formed galaxies are a result of cavitation, their structures are maintained via the combination of Spacetime Cavitation Gravitation and Mass Gravitation, where, on smaller scales such as solar systems, gravitation is based on mass (spacetime curvature resulting from the presence of mass), but on the larger scales of galaxies, structure is maintained within the underlying, curved Spacetime fabric (spacetime curvature caused by cavitation). In other words, visible matter rests upon the non-flat, preexisting Spacetime structures resulting from cavitation, like bits of Styrofoam floating upon a whirlpool of water draining from a kitchen sink. This removes the apparent discrepancy between galaxy structure and the insufficient mass to account for it; and further removes the need for Dark Matter altogether (unless we redefine Dark Matter itself as merely a vacuum of Spacetime, which may be useful, but more on this later).

This means that galaxies could be more accurately thought of as regions of curved spacetime - enormous Gravity Wells - rather than as collections of matter (we will discuss how matter plays into this in the next post). The relatively even distribution of galaxies throughout the observable Universe is unlikely to be a quirk of the Big Bang. I submit that galaxies simply form where the spacetime fabric breaks down (cavitates) at points of extreme stress, most likely as a result of Universal Expansion, in a way very analogous to how gasses form in water when decompressed.

Interestingly, astronomers have discovered an object in space that directly supports this hypotheses, which was written about in a BBC News article in February, 2005. The article discusses a region of space that possesses the form and structure of a rotating galaxy, but without stars. Instead, the region is filled with hydrogen - a hydrogen disc. I will discuss the importance of this discovery, and its particular relevance to Dark Matter in the next post.
A quick note: The star-less galaxy above was discovered several years after I formed the Dark Matter hypotheses discussed in this blog series. When I happened across the article, which discusses the presence of an unmistakable galactic structure containing virtually nothing except hydrogen, it aligned so perfectly with my hypotheses that I was astounded. I had prior, no expectation or hope that such direct and supporting evidence would surface in my lifetime. As we will discuss in the next post, the presence of hydrogen in this star-less galaxy is key and critical to the completion of the Dark Matter question.
To view the next post in this series, click here.